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Abstract. This paper applies the SDP (semidefinite programming) relaxation originally developed
for a0-1 integer program to a general nonconvex QP (quadratic program) having a linear objective
function and quadratic inequality constraints, and presents some fundamental characterizations of the
SDP relaxation including its equivalence to arelaxation using convex-quadratic valid inequalities for
the feasible region of the QP.
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1. Introduction

We usethe symbols S™ for the set of m x m symmetric matrices, and 8™ (or S, ,
respectively) for the cone consisting of m x m symmetric positive semidefinite (or
positive definite, respectively) matrices. We are concerned with a canonical form
QP (quadratic program):

Minimize ¢’y subjectto y € F. (1)

Here

\

F = {yeH : yTPky§0(k::1,2,...,m)},
H = {y:(y07y17"'7yn)T€Rl+n . yo:l},

— vy 1+n

¢ =(g)em @
T

P, = (q:’/fz qgf) eSS (k=1,2,...,m),

m, € R,q,€R", Q,eS" (k=12,...,m).

7

Note that the quadratic function y’ P,y involved in the inequality constraint is
convex (strictly convex or linear, respectively) on the hyperplane H if and only
if Q, € S (Qr € S, or Q, = O, respectively). Q, can be indefinite, so that
the feasible region F' of the QP (1) is a nonconvex subset of the hyperplane H in
general. This paper presents a general method for constructing an SDP (semidefi-
nite programming) which serves as arelaxation of the QP (1). Our SDP relaxation
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method may be regarded as a straightforward application of the Lovasz—Schrijver
SDP relaxation method [16] for 0-1 IPs (integer programs) to the QP (1). In the
last few years, interior-point methods originally proposed for linear programs ([11,
13, 18], etc.) were extended to SDPs ([1, 3, 4, 9, 14, 19, 29, etc.]). The extension
of interior-point methods to SDPs has greatly contributed to the recent remark-
able development of the SDP relaxation for various combinatorial optimization
problems and nonconvex QPs ([1, 5, 6, 7, 8, 10, 12, 20, 21, 22, 23, etc.]). Among
others, Ramana [21] studied the SDP relaxation for a general nonconvex QP hav-
ing a quadratic objective function and quadratic inequality constraints, and Poljak,
Rendl and Wolkowicz [20] studied several relaxation methods, including the SDP
relaxation, for a 0-1 QP and their relations. These two works [20, 21] are closely
related to the current paper; the QP (1) is a special case of the general nonconvex
QPin[21], and some of the results on the 0-1 QP in [20] remain valid for the QP
D).

The canonical form QP (1) covers many mathematical programs to which
the SDP relaxation has been applied so far. We can convert the 0-1 constraint
y; = 0 or 1 on a variable y; into a system of quadratic inequalities y;(y; —
yo) < 0 and — y;(y; — yo) < O with yo = 1. Also we can reduce the 0-
1 QP studied in [20] and the general nonconvex QP in [21] into the QP (1). The
important feature of the QP (1) liesin the linear objectivefunction c’'y; specifically
inf{c’y : ye coF} =inf{c’y : y € F}, wherecoF denotesthe convex hull of
F. This feature makes it possible for us to concentrate on the SDP relaxation of
the feasible region F, a convex set F' including coF'. Our major concern is how
closely the SDP relaxation F' approximates CoF'.

For every A € §™ and B € S8™, A e B denotes their inner product, i.e.,
A ¢ B = Tr A”B (the trace of A”B). Define

d’/2
CE(7 />€Sl+",

d/2 O ©)
G = {Yegfn Yoo =1, PkngO(kzl,Z,...,m)}.
We now introduce an SDP:
Minimize CeY subjectto Y €G. (4)

Letting ' = {Yep : Y € G}, wheregy = (1,0,0,...,0)7 € RM", we project
the SDP onto the the Euclidean space to obtain a convex minimization problem:

Minimize ¢’y subjectto y € F. (5)
Obviously, G and F are both convex subsets of S+ and R, respectively. The

lemma below shows that the two problems (4) and (5) above are equivaent, and
that both serve as a relaxation of the QP (1).
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LEMMA 1.1.

(i) yisafeasible(or minimum, respectively) solution of problem(5) if and only if
y = Y for some feasible (or minimum, respectively) solution Y of problem
(4).

(i) coF C F.

(iii) inf{CeY : Y e G} =inf{cTy : ye F} <inf{c"y : y e coF} =
inf{c’y : ye F}.

Proof. The assertions (i) is straightforward from the constructi on of g: and F.
To prove (ii), assume that y € F. If we define Y = yy", then Y € G; hence
y=Ye e F.Since F isconvex, we obtainco F C F. Theassertlon (iii) follows
from (i) and (ii). O

Wewill be mainly concerned with the convex minimization problem (5) instead of
the SDP (4). If werestrict ourselvesto QPs derived from 0-1 IPs, our construction
of the SDP (4) and its projection (5) onto the Euclidean space are essentially the
same as the ones used in the Lovasz—Schrijver SDP relaxation method [16]. (This
will be discussed in Section 3). They established several nice properties on their
method, and applied their method and those properties to the maximum stable set
problem. Theassertions (i), (ii) and (iii) of Lemma 1.1 have been utilized explicitly
or implicitly in many papers on the SDP relaxation. It is easily verified (and also
known) that if we added the condition rank Y = 1 in the definition of G such that

gAE{YGS};n  Yoo=1 PreY<0(k=12,...,m), rankY:l},

then F = {Ye : Y € G} would coincide with the feasible region F of the QP
(1). Seethe papers[1, 5-8, 10, 12, 20, 21, etc.].

Some characterizations of the SDP relaxation are known. If we apply Shor’s
relaxation [27, 28] to the QP (1), we obtain an SDP

Maximize to subjecttot € T, (6)

where

C —toeo) + Y _t;Pi € ST,
1=1
ti>0(i=12,...,m)

The SDP (6) isadual of the SDP(4). To ensure the strong duality relation between
the SDPs (4) and (6), we need a regularity condition (or the (generalized) Slater
condition [17, 24, etc.]), Condition 1.2 below. Let
G={Yes"" : Yo=1,P,eY<O0(k=12,....,m)}
K = {k : P ,eY =0 foreveryY € G},
¢©={k : PyeY <O forsomeY € G},
L={YeS" : Yp=1,P,eY=0(keK)}

T = {t = (to, t1,...,tm)" € RMH™ :
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Then £ forms the minimal affine subspace of S¥*" containing G.

CONDITION 1.2. Therelative interior

Yoo=1 PreY =0(k € K)
1+n . 00 y Tk )
{Y€S++ " PreY <O0(ke K" }

of the feasible region G of the SDP (4) with respect to £ is nonempty.

By the duality theorem (see, for example, Theorem 4.2.1 of [19]) and Lemma 1.1,
we obtain:

LEMMA 1.3.
(i) (Weak Duality) sup{to : t € 7%} <inf{c’y : y e F}.

(i) (Srong Duality) Suppose that Condition 1.2 holds and that —oco < g =
inf{c”y : y € F'}. Then the SDP (6) has a maximum solution t* € T'¢ with
the maximum objective value ty = g.

In (ii) of Lemma 1.3, we can replace Condition 1.2 on the SDP by a stronger
condition on the QP (1):

CONDITION 1.4. Theinterior {y € H : y'Pyy <0 (k =1,2,...,m)} of the
feasible region F' of the QP (1) is nonempty.

In fact, we can easily verify that if y isan interior point of the feasible region F' of
the QP (1) and if ¢ > Ois sufficiently small then (1 — €)yy” + el givesaninterior
point of the feasible region G of the SDP (4). Here| denotesthe (1+ n) x (1+ n)
identity matrix.

Poljak, Rendl and Wolkowicz [20] investigated the relation between the SDP
relaxation and the Lagrange relaxation for a 0-1 QP. Some of the results presented
in their paper [20] remain valid for ageneral nonconvex QP. We state the Lagrange
relaxation for the QP (1), and relate it to the SDP relaxation for the QP (1). Define
the Lagrangian function

L(y,s) =c'y+ Y spy' Py foreveryy € H andse R™,
k=1
where H = {y € R*" : yo = 1}. Then, for each s > 0, iQLL(y, S) gives a
y
lower bound for the minimum value of the QP (1);

in}qu(y, s) <inf{c’y : y € F} foreverys> 0.
ye

It follows that

sup inf L(y,s) <inf{c'y : ye F}.
up inf L8 < inHcTy @y € I}
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Thisisthe standard application of the Lagrange relaxation method to the QP (1). In
particular, theleft hand sidesup i QL L(y, s) of theinequality above correspondsto
s>0 Y

the Lagrangian dual of the QP (1). The Lagrangian dual sup i Q;I L(y,s) involves
s>0 Y

a hidden semidefinite constraint s € 7 on s > 0, where

m
T={teR™ :t>0, > #Q; €81}, 7
k=1
so that
sup inf L(y,s) = sup inf L(y,s). 8
szg yeH 0.9 se]g yel 9 ©

The identity above holds since infyc g L(y,s) = —occ if S ¢ T in the inner mini-

mization of the Lagrangian dual. (Thisfact is due to the paper [20]). Furthermore,

we can easily derive that the Lagrangian dual sup i Q}fq L(y,s) is equivalent to
y

s>0
Shor’s relaxation [27, 28] of the QP (1);

sup inf L(y,s) =sup{tp : t € T} 9)
seT YEH

Hence we obtain by Lemma 1.3 and (8) that

sup inf L(y,s) <inf{c’y : y e F},

s>0 yeH
which means that the SDP relaxation of the QP (1) attains a best Lagrangian
relaxation of the QP (1). Thisfact was shown for a0-1 QP in the paper [20].

By Lemma 1.1, we know that the feasible region F of the QP (1) is contained
in the feasible region F' of its relaxation (5). The above discussion using Shor’s
relaxation and the Lagrangian dual, however, has not provided us any further
information on the relation between F' and F'. The purpose of this paper is to
characterize the feasible region F' of the problem (5) in terms of convex-quadratic
valid inequalities of the feasible region F' of the QP (1).

2. Main Theorems

Let

T
P= <q7/TZ qQ/2> eSS reR, qeR", Qe S

We say that an inequality y'Py < 0 is a convex-quadratic (strictly convex-
quadratic or linear, respectively) valid inequality for F' if

QeST (Qe S, orQ=0,respectively) andy”Py <0 foreveryy € F.
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Then coF, the convex hull of F' is completely determined by all the convex-
guadratic valid inequalities (or al the linear valid inequalities) for F;

coF = () {yeH :y"Py<0}= () {yeH : y'Py <0},
PEVL Per

whereVg (or Vp,, respectively) denotesthe set of all matricesP € S 147 that induce
convex-quadratic (or linear, respectively) valid inequalitiesfor F'. In general, how-
ever, it is not possible to generate all the the convex-quadratic valid inequalities
(or dl thelinear valid inequalities) for F' to form coF'. One easy way of generating
a convex-quadratic valid inequality for F' is to take a nonnegative combination of
the quadratic inequalities of the QP (1). Thisleads us to arelaxation of the QP (1)
using such convex-quadratic valid inequalities for F':

Minimizec’y subjecttoy € F, (10)

where

fsly) = y¥ (Z skPk> y foreveryy € R™" andevery s> 0,
k=1

F = {yeR1+" cyo=1and fs(y) <0 foreverysef},
m (11
yo=1 andy” (ZskPk>y§0 1
— yERH'" : k=1

m
for every s> 0 suchthat ) 5,Q; € S
k=1 )

HereT isdefined by (7). By construction, weobviously seethat I isaclosed convex
subset of H andthat F' C coF' C F'; hence the convex minimization problem (10)
serves as arelaxation of the QP (1). Although the derivation of the relaxation (10)
of the QP (1) is simple and straightforward, it seems difficult to implement the
relaxation (10) numerically because (10) is a semi-infinite programming problem
with an infinite number of convex-quadraticinequalities fs(y) < 0 (s € T') andthe
index set 7" is a continuum, non-polyhedral and convex subset of R™ in general.
We may regard the right hand side sup yl Q}Zf L(y, s) of (8) asthe Lagrangian dual
seT

S
of the semi-infinite programming problem (10). We can prove under Condition 1.4
that

. o T . ~
sup ylg}‘{L(y,s) =inf{c'y : y€ F}.
scT

See, for example, Theorem 4.1 of [2]. Theorem 2.1 below establishes that FCF
andthat F' = cl F, theclosureof F'if Condition 1.2 holds. Thusthe SDP relaxation
may be regarded as an implementable version of the relaxation (10).
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THEOREM 2.1.
(i) F CF.

(i) Supposethat thefeasibleregion G of the SDP (4) satisfies Condition 1.2. Then
F=cF.

Theorem 2.2 below shows that the SDP relaxation (4) (or (5)), Shor’s relaxation
(6), the Lagrangian dual and the relaxation (10) are equivalent under Condition 1.2.

THEOREM 2.2.

(i) sup{to : te T = sup inf L(y,s) =sup inf L(y,s)
0<scRm YEH seT YEH

< inf supL(y,s) =inf{c’y : ye F
_ngg (¥.9) {c'y:yerF}

< inf{c"y : ye F} =inf{CeY : Y €G}.

(if) If Condition 1.2 is satisfied then both inequalities * <” above hold with the
equality “ =".

The proofs of Theorems 2.1 and 2.2 will be givenin Section 4.

3. Some I mplications of Theorem 2.1

We first consider the case where all the quadratic functions H 5y — y' Py € R
(k=1,2,...,m) aeconvex or Q, € S (k = 1,2,...,m). In this case, all
the inequality constraintsy’Pyy < 0 (k = 1,2, ..., m) themselves form convex-
quadratic valid inequalities for F'. Hence we know by Theorem 2.1 that F' =
coF' = F = F. Therefore we can compute a minimum solution of the QP (1) by
solving the SDP (4).

Consider another extreme case where the quadratic functions H > y —
yI'Pry € R (k = 1,2,...,¢) arelinear (i.e, Q, = O (k = 1,2,...,¢)) and
the quadratic functions H >y — y'P,y € R (k = £+ 1,4+ 2,...,m) ae
strictly concave (i.e., —Q, € St (k=¢+ 1,4+ 2,...,m)). Wethen seethat if
S, sy Pry < 0Owith s > 0is aconvex-quadratic valid inequality for F' then
sp=0(k=£+21,0+2,...,m). It followsthat

F={yeH :y'Py<0(k=12,...,0}
If Condition 1.2 is satisfied then ¢l F' = F'. Hence the stri ctly concave inequality

constraintsy’ P,y < 0 (k = ¢4 1,£+2,...,m) make no contribution to the SDP
relaxation (4) in this case.
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Suppose now that 37" ; spy’ Pry < 0 with s > 0 is a convex-quadratic valid
inequality for F. By Theorem 2.1, we know that y ¢ F if 31", spy' Pry > O.
Assume that

> sy Py =0 andy ¢ F. (12)
k=1

We don’'t know in general whether y € F or y ¢ F. However, if in addition
S sy Pryisstrictly convexon Hor 1 1 sxQy, € S’ , thenwecan conclude
thaty ¢ F. In fact, we see from the latter relationy ¢ F of (12) that y"P;y > 0
for somej. If e > Oissufficiently small then 37 ; siy” Piy + ey P;y < Oforms
aconvex-quadratic valid inequality for F which cutsoff y, i.e., > ; sx . Py +
ey"P;y > 0. Hencey ¢ F by Theorem 2.1,

The discussion above suggests the following principle.

¢ Incorporate more “ strict convexity” in the representation of the feasibleregion
F' to make the SDP relaxation (4) (or (5)) more effective.

This principle may be seen from the hidden semidefinite constraint on s > 0
involved in the Lagrangian dual. See (8). We show some examples. Let

. —yo(yo+y;) <0 (j =1,2),
Fi = ¢y=(yo,y1,y2)" € H : —yolyo—y;) <0(j =1,2),
y5 — (y1 — v0)*> — (y2 — 40)> < 0
L —1<y;<1(j =12 }
— = 17 9 T€R3 . J ? ’ ,

H = {y=(yo,y1,yz)T€R3 : yozl}-

The quadratic function y3 — (y1 — yo)2 — (y2 — yo)? involved in the representation
of F'; isstrictly concaveon H and all other functions are linear on H. We can also
verify that F'; satisfies Condition 1.4. Thus we have that

o Fi=F1= {yz (LynLya)" €R® 1 —1<y; <1(j =1,2) }
We can represent the same set F'1 in different ways. For example, let

yT(P1 + P2)y < 0,
—yo(yo+y;) <0 (j =1,2),
—yolyo —y;) <0(j =1,2),
yI'Psy <0
2+ yf+9y5 <0,
=y=Lynyp) T €R®: -1<y; <1(j=1,2), ,
1-(pn—1?—(12—1)2%<0

FZE y:(y07y17y2)TeH :
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Fs={y=(yoy,9)" €H : y'Py<0(k=123)}

-1+y7<0(j =12
={y=(Lyn,y)" € R®: J 1€ ,
{y (L y1.92) L= (g1 - 12~ (1o~ )2 <0

where
PL=| O €83, le<ég>682,
P,=1| 0 e S sz<82>esz,

= 1 683,Q3E<_é_2>682.

The sets F'1, F'» and F'3 geometrically coincide with each other although their
algebraic representation are different from each other. Note also that the strictly
convex-quadratic inequality constraint y”'(P; 4+ P,)y < 0 involved in the repre-
sentation in F'; is redundant. But it plays an essential role in creating a stronger
SDP relaxation F'5 than F'1. In fact, we see that

y' (P1+ P2+ P3)y = —3u + 2yoy1 + 2yoy2 < 0 (13)

formsaconvex-quadratic valid inequality for F'». The same convex-quadraticvalid
inequality (13) appliesto F'3. Consequently we obtain that

F, C coFq
Cﬁ'z:ﬁ'z:ﬁg:ﬁg
_ _ T 3 . _1§y]§1(]:172)7}
_{y_(laylayZ) S A 2y1+2y2§3
Cﬁlzﬁl.

Here“C” denotesthe proper inclusion.
Now we apply Theorem 2.1 to the SDP relaxation [16] of 0-1 IPs. Consider a
O-11P:

Minimize ¢’y subjecttoy € F, (14)
where

T .
_ _ T . a]ySO(‘]Zl,Z,,E),
F‘{y_(yo’yl"“’yn) €H:  —oa1(i=12....n)
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We can convert this 0-1 IP into a QP:

Minimize c’y

subjectto yoaly <0 (j =1,2,...,0),
yl(yl _yO) < O(Z = 1,2,...,71), ) (15)
y € H.

whichis a special case of the QP (1). We observethat if

n

l n
> Awoai Y+ Y nayi(yi — yo) + Y vi (—yiyi — y0)) <0 (16)
j=1 i=1 i=1
withyo = 1, \; > 0, u; > Oand v; > 0 is a convex-quadratic valid inequality,
we must have that i; > v; (1 = 1,2,...,n). Hence we may assume that v; = 0
(1=1,2,...,n)in(16). It follows that

- aly<0(j=1,2,...,0),
e N J
F {VEH' 0<y<1(i=12..n) [ )

Therefore the resultant relaxation problem
Minimizec’y subjecttoy € F

is nothing more than the standard linear programming relaxation of the 0-1 1P (14).
Note that the SDP relaxation induced from the QP (15) can satisfy Condition 1.2
athough it does not satisfy Condition 1.4. In such acase, weobtaincl F' = F.

To make the SDP relaxation of the IP (14) effective and stronger, we need to
add redundant quadratic inequality constraints such as

—YilYr < O(Z = 1323"'an7k = 1,2,...,”),
iy <0(i=12...,n,j=12...,10),
(o—w)ajy<0(i=12...,n7=12...,40),
—yilyo—yk) <0(i=21,2,...,n,k=21,2,...,n),
—~vylaaly<0(j=12,....,6,k=12,....0)
tothe QP (15). Thiswasactually donein the paper [16]. Seea so[1] etc. Each of the
additional inequalities above alone may not be a convex-quadratic valid inequality
for F' in general. Combining the additional inequalities together with the original

ones, however, we can expect to create convex-quadratic valid inequalities for F
which cut off some nonintegral vertices of the LP relaxation F given by (17).

4. Proof of Theorems2.1and 2.2

We need two lemmas to prove the theorems.
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LEMMA 4.1. Let

T
P= <q7/TZ qQ/2> eSY" reR qeR", QeS".

Supposethat a (1 +n) x (1+n) matrixY anday € R*™" satisfy
y=Ye € R*" PeY <0, Yo=1and Y € S}

Theny € R satisfiesy’ Py < 0 and yo = 1.
Proof. Weseefromy = Yey and Yoo = 1that o = 1. Let

1 1x"
() v (),
By definition and assumption, we have that

y'Py = 7+ qg"x+ x"Qx
=74+9'xX+QeX —Qe (X —xxI)
= P.Y—Q.(X—XXT)
< —Qe (X —xxT).

On the other hand, it follows from Y & S}J” that X — xx!' e S’y We obtain by

Qe St thaQe (X —xxT) > 0. Thusy’ Py < 0. O
LEMMA 4.2. inf{c"y : ye F} = inf supL(y,s).
yeH =
seT
. - m
Proof. Assumethat§ ¢ F. Thenthereisan$ € 7' suchthat > _ 5,5*P,y > 0.

k=1
By the definition of T', we know that AS € T for every A > 0. Hence

m
sup L(Y,s) > sup (CTV +A> §kyTPk)7> = }o0.
seT A>0 k=1

Thus we have shown that sup L(y, s) = oo if y & F. If F = () then
seT

inf{c’y : ye F} = inf supL(y,s) = 4.
yeH -~
seT
Otherwise we have that

inf supL(y,s) = inf supL(y,s) = inf L(y,0) =inf{c’y : y e F}.
yeH o7 yeF scT yeF
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Proof of Theorem2.1. (i) Assumethaty € F. ThenthereexistsaY € G such
that y = Yep; specifically Y satisfiesP, e Y <0 (k =1,2,...,m). Hence

m
(ZSk%) oY <0 foreverys= (s1,52,...,5m). >0.
k=1
By Lemmad4.1, we seethat

T (Z skPk> y <0 whenever > 5,Q; € S% orseT.

k=1 P

Thisimpliesy € F. Thuswe have shownthat F' C F'.
(i) Since F' C F', we know that

inf{c’y:ye F} <inf{c'y:ye F} (18)
for every c € R¥™. Letc € R befixed arbitrarily. If inf{c"y :y € F} = —
theninf{c’y :y € F} = —oo by (18). Hence we obtain the equality

inf{c"y:ye F} =inf{c’y:y e F}. (19)

Now assume that § = inf{cTy : y € F} > —oco. By Lemma 1.3, there exists
a maximum solution t* = (¢§,¢5,...,t5,)7 € R¥™ of the SDP (6) with the
objectivevaluetj = g. We also see by (9) and Lemma4.2 that

to=sup inf L(y,s) < inf supL(y,s) = inf{c’y : ye F}.
s Y Vel ooF

Therefore
inf{c’y:ye F} <inf{c’y:yeF} =g =t; <inf{c"y:ye F}.

Thus we have shown the equality (19). By the construction, F isaclosed convex
subset of R*™ and F isaconvex subset of R*". Hencetheidentity (19) for every
c € R impliesthat F = cl F'. This completes the proof of Theorem 2.1. O

Proof of Theorem 2.2. The first two equalities of the theorem follow from (8)
and (9). The inequality on the second line is straightforward. The equality on the
second line follows from Lemma 4.2. We obtain the inequality on the third line by
F C F ((i) of Theorem 2.1), and the last equality by construction of F'.

(ii) We know by Lemma 1.3 that sup{to : t € T%} =inf{cly : y e F}. Thus
the desired result follows. O
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5. Concluding Remarks

If we drop the positive semidefinite constraint Y € S}j” from the SDP relaxation
(4), we have an LP (linear program):

Minimize Ce Y subjecttoY € ?’,
where §' = {Yesl+" Yo =1 andeoYSO(kzl,Z,...,m)}. Obvi-

oudy G C G'; hencethe LP serves as arelaxation of the QP (1). ThisLP relaxation
essentially corresponds to the linearization method applied to the QP (1). See the
papers[25, 26, etc.] for more details.
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