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Abstract. This paper applies the SDP (semidefinite programming) relaxation originally developed
for a 0-1 integer program to a general nonconvex QP (quadratic program) having a linear objective
function and quadratic inequality constraints, and presents some fundamental characterizations of the
SDP relaxation including its equivalence to a relaxation using convex-quadratic valid inequalities for
the feasible region of the QP.
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1. Introduction

We use the symbols Sm for the set ofm�m symmetric matrices, and Sm
+

(or Sm
++

,
respectively) for the cone consisting of m�m symmetric positive semidefinite (or
positive definite, respectively) matrices. We are concerned with a canonical form
QP (quadratic program):

Minimize cT y subject to y 2 F : (1)

Here

F �
n

y 2 H : yTPky � 0 (k = 1; 2; . . . ;m)
o
;

H � fy = (y0; y1; . . . ; yn)T 2 R1+n : y0 = 1g;

c �

�


d

�
2 R1+n;

Pk �
�

�k qTk =2
qk=2 Qk

�
2 S1+n (k = 1; 2; . . . ;m);

�k 2 R; qk 2 Rn; Qk 2 S
n (k = 1; 2; . . . ;m):

9>>>>>>>>>>=
>>>>>>>>>>;

(2)

Note that the quadratic function yTPky involved in the inequality constraint is
convex (strictly convex or linear, respectively) on the hyperplane H if and only
if Qk 2 S

n
+

(Qk 2 S
n
++

or Qk = O, respectively). Qk can be indefinite, so that
the feasible region F of the QP (1) is a nonconvex subset of the hyperplane H in
general. This paper presents a general method for constructing an SDP (semidefi-
nite programming) which serves as a relaxation of the QP (1). Our SDP relaxation
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368 TETSUYA FUJIE AND MASAKAZU KOJIMA

method may be regarded as a straightforward application of the Lovász–Schrijver
SDP relaxation method [16] for 0-1 IPs (integer programs) to the QP (1). In the
last few years, interior-point methods originally proposed for linear programs ([11,
13, 18], etc.) were extended to SDPs ([1, 3, 4, 9, 14, 19, 29, etc.]). The extension
of interior-point methods to SDPs has greatly contributed to the recent remark-
able development of the SDP relaxation for various combinatorial optimization
problems and nonconvex QPs ([1, 5, 6, 7, 8, 10, 12, 20, 21, 22, 23, etc.]). Among
others, Ramana [21] studied the SDP relaxation for a general nonconvex QP hav-
ing a quadratic objective function and quadratic inequality constraints, and Poljak,
Rendl and Wolkowicz [20] studied several relaxation methods, including the SDP
relaxation, for a 0-1 QP and their relations. These two works [20, 21] are closely
related to the current paper; the QP (1) is a special case of the general nonconvex
QP in [21], and some of the results on the 0-1 QP in [20] remain valid for the QP
(1).

The canonical form QP (1) covers many mathematical programs to which
the SDP relaxation has been applied so far. We can convert the 0-1 constraint
yj = 0 or 1 on a variable yj into a system of quadratic inequalities yj(yj �
y0) � 0 and � yj(yj � y0) � 0 with y0 = 1. Also we can reduce the 0-
1 QP studied in [20] and the general nonconvex QP in [21] into the QP (1). The
important feature of the QP (1) lies in the linear objective function cT y; specifically
inffcT y : y 2 coFg = inffcT y : y 2 Fg, where coF denotes the convex hull of
F . This feature makes it possible for us to concentrate on the SDP relaxation of
the feasible region F , a convex set bF including coF . Our major concern is how
closely the SDP relaxation bF approximates coF .

For every A 2 Sm and B 2 Sm, A � B denotes their inner product, i.e.,
A � B � Tr ATB (the trace of ATB). Define

C �

 
 dT =2

d=2 O

!
2 S1+n;

bG �
n

Y 2 S1+n
+

: Y00 = 1; Pk � Y � 0 (k = 1; 2; . . . ;m)
o
:

9>>=
>>; (3)

We now introduce an SDP:

Minimize C � Y subject to Y 2 bG: (4)

Letting bF � fYe0 : Y 2 bGg, where e0 = (1; 0; 0; . . . ; 0)T 2 R1+n, we project
the SDP onto the the Euclidean space to obtain a convex minimization problem:

Minimize cT y subject to y 2 bF : (5)

Obviously, bG and bF are both convex subsets of S1+n and R1+n, respectively. The
lemma below shows that the two problems (4) and (5) above are equivalent, and
that both serve as a relaxation of the QP (1).
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SDP RELAXATION 369

LEMMA 1.1.
(i) y is a feasible (or minimum, respectively) solution of problem (5) if and only if

y = Ye0 for some feasible (or minimum, respectively) solution Y of problem
(4).

(ii) coF � bF .

(iii) inffC � Y : Y 2 bGg = inffcT y : y 2 bFg � inffcT y : y 2 coFg =
inffcT y : y 2 Fg.

Proof. The assertions (i) is straightforward from the construction of bG and bF .
To prove (ii), assume that y 2 F . If we define Y = yyT , then Y 2 bG; hence
y = Ye0 2 bF . Since bF is convex, we obtain co F � bF . The assertion (iii) follows
from (i) and (ii). 2

We will be mainly concerned with the convex minimization problem (5) instead of
the SDP (4). If we restrict ourselves to QPs derived from 0-1 IPs, our construction
of the SDP (4) and its projection (5) onto the Euclidean space are essentially the
same as the ones used in the Lovász–Schrijver SDP relaxation method [16]. (This
will be discussed in Section 3). They established several nice properties on their
method, and applied their method and those properties to the maximum stable set
problem. The assertions (i), (ii) and (iii) of Lemma 1.1 have been utilized explicitly
or implicitly in many papers on the SDP relaxation. It is easily verified (and also
known) that if we added the condition rank Y = 1 in the definition of bG such that

bG � nY 2 S1+n
+

: Y00 = 1; Pk � Y � 0 (k = 1; 2; . . . ;m); rank Y = 1
o
;

then bF = fYe0 : Y 2 bGg would coincide with the feasible region F of the QP
(1). See the papers [1, 5–8, 10, 12, 20, 21, etc.].

Some characterizations of the SDP relaxation are known. If we apply Shor’s
relaxation [27, 28] to the QP (1), we obtain an SDP

Maximize t0 subject to t 2 T
d
; (6)

where

T
d �

8><
>:t = (t0; t1; . . . ; tm)T 2 R

1+m :
C� t0e0eT0 +

mX
i=1

tiPi 2 S
1+n
+

;

ti � 0 (i = 1; 2; . . . ;m)

9>=
>; :

The SDP (6) is a dual of the SDP(4). To ensure the strong duality relation between
the SDPs (4) and (6), we need a regularity condition (or the (generalized) Slater
condition [17, 24, etc.]), Condition 1.2 below. Let

G = fY 2 S1+n : Y00 = 1; Pk � Y � 0 (k = 1; 2; . . . ;m)g;

K = fk : Pk � Y = 0 for every Y 2 Gg;

K
c = fk : Pk � Y < 0 for some Y 2 Gg;

L = fY 2 S1+n : Y00 = 1; Pk � Y = 0 (k 2 K)g:
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370 TETSUYA FUJIE AND MASAKAZU KOJIMA

Then L forms the minimal affine subspace of S1+n containing G.

CONDITION 1.2. The relative interior�
Y 2 S1+n

++
:
Y00 = 1; Pk � Y = 0 (k 2 K);
Pk � Y < 0 (k 2 Kc)

�

of the feasible region bG of the SDP (4) with respect to L is nonempty.

By the duality theorem (see, for example, Theorem 4.2.1 of [19]) and Lemma 1.1,
we obtain:

LEMMA 1.3.

(i) (Weak Duality) supft0 : t 2 T dg � inffcT y : y 2 bFg.

(ii) (Strong Duality) Suppose that Condition 1.2 holds and that �1 < bg �
inffcT y : y 2 bFg. Then the SDP (6) has a maximum solution t� 2 T d with
the maximum objective value t�0 = bg.

In (ii) of Lemma 1.3, we can replace Condition 1.2 on the SDP by a stronger
condition on the QP (1):

CONDITION 1.4. The interior fy 2 H : yTPky < 0 (k = 1; 2; . . . ;m)g of the
feasible region F of the QP (1) is nonempty.

In fact, we can easily verify that if y is an interior point of the feasible region F of
the QP (1) and if � > 0 is sufficiently small then (1� �)yyT + �I gives an interior
point of the feasible region bG of the SDP (4). Here I denotes the (1+n)� (1+ n)
identity matrix.

Poljak, Rendl and Wolkowicz [20] investigated the relation between the SDP
relaxation and the Lagrange relaxation for a 0-1 QP. Some of the results presented
in their paper [20] remain valid for a general nonconvex QP. We state the Lagrange
relaxation for the QP (1), and relate it to the SDP relaxation for the QP (1). Define
the Lagrangian function

L(y; s) = cT y +
mX
k=1

skyTPy for every y 2 H and s 2 R
m
;

where H = fy 2 R1+n : y0 = 1g. Then, for each s � 0, inf
y2H

L(y; s) gives a

lower bound for the minimum value of the QP (1);

inf
y2H

L(y; s) � inffcT y : y 2 Fg for every s � 0:

It follows that

sup
s�0

inf
y2H

L(y; s) � inffcT y : y 2 Fg:
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SDP RELAXATION 371

This is the standard application of the Lagrange relaxation method to the QP (1). In
particular, the left hand side sup

s�0
inf

y2H
L(y; s) of the inequality above corresponds to

the Lagrangian dual of the QP (1). The Lagrangian dual sup
s�0

inf
y2H

L(y; s) involves

a hidden semidefinite constraint s 2 eT on s � 0, where

eT � ft 2 R
m : t � 0;

mX
k=1

tkQk 2 S
n
+
g; (7)

so that

sup
s�0

inf
y2H

L(y; s) = sup
s2eT inf

y2H
L(y; s): (8)

The identity above holds since infy2H L(y; s) = �1 if s 62 eT in the inner mini-
mization of the Lagrangian dual. (This fact is due to the paper [20]). Furthermore,
we can easily derive that the Lagrangian dual sup

s�0
inf

y2H
L(y; s) is equivalent to

Shor’s relaxation [27, 28] of the QP (1);

sup
s2eT inf

y2H
L(y; s) = supft0 : t 2 T

dg: (9)

Hence we obtain by Lemma 1.3 and (8) that

sup
s�0

inf
y2H

L(y; s) � inffcT y : y 2 bFg;
which means that the SDP relaxation of the QP (1) attains a best Lagrangian
relaxation of the QP (1). This fact was shown for a 0-1 QP in the paper [20].

By Lemma 1.1, we know that the feasible region F of the QP (1) is contained
in the feasible region bF of its relaxation (5). The above discussion using Shor’s
relaxation and the Lagrangian dual, however, has not provided us any further
information on the relation between F and bF . The purpose of this paper is to
characterize the feasible region bF of the problem (5) in terms of convex-quadratic
valid inequalities of the feasible region F of the QP (1).

2. Main Theorems

Let

P �
�

� qT =2
q=2 Q

�
2 S1+n

; � 2 R; q 2 R
n
; Q 2 Sn:

We say that an inequality yTPy � 0 is a convex-quadratic (strictly convex-
quadratic or linear, respectively) valid inequality for F if

Q 2 Sn
+

(Q 2 Sn
++

or Q = O, respectively) and yTPy � 0 for every y 2 F :
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372 TETSUYA FUJIE AND MASAKAZU KOJIMA

Then coF , the convex hull of F is completely determined by all the convex-
quadratic valid inequalities (or all the linear valid inequalities) for F ;

coF =
\

P2VL

fy 2 H : yTPy � 0g =
\

P2VQ

fy 2 H : yTPy � 0g;

whereVQ (orVL, respectively) denotes the set of all matrices P 2 S1+n that induce
convex-quadratic (or linear, respectively) valid inequalities forF . In general, how-
ever, it is not possible to generate all the the convex-quadratic valid inequalities
(or all the linear valid inequalities) for F to form coF . One easy way of generating
a convex-quadratic valid inequality for F is to take a nonnegative combination of
the quadratic inequalities of the QP (1). This leads us to a relaxation of the QP (1)
using such convex-quadratic valid inequalities for F :

Minimize cT y subject to y 2 eF ; (10)

where

fs(y) � yT
 

mX
k=1

skPk

!
y for every y 2 R

1+n and every s � 0;

eF �
n

y 2 R1+n : y0 = 1 and fs(y) � 0 for every s 2 eTo ;

=

8>>>><
>>>>:

y 2 R1+n :

y0 = 1 and yT
 

mX
k=1

skPk

!
y � 0

for every s � 0 such that
mX
k=1

skQk 2 S
n
+

9>>>>=
>>>>;
:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

(11)

Here eT is defined by (7). By construction, we obviously see that eF is a closed convex
subset of H and that F � coF � eF ; hence the convex minimization problem (10)
serves as a relaxation of the QP (1). Although the derivation of the relaxation (10)
of the QP (1) is simple and straightforward, it seems difficult to implement the
relaxation (10) numerically because (10) is a semi-infinite programming problem
with an infinite number of convex-quadratic inequalities fs(y) � 0 (s 2 eT ) and the
index set eT is a continuum, non-polyhedral and convex subset of Rm in general.
We may regard the right hand side sup

s2eT inf
y2H

L(y; s) of (8) as the Lagrangian dual

of the semi-infinite programming problem (10). We can prove under Condition 1.4
that

sup
s2eT inf

y2H
L(y; s) = inffcT y : y 2 eFg:

See, for example, Theorem 4.1 of [2]. Theorem 2.1 below establishes that bF � eF
and that eF = cl bF , the closure of bF if Condition 1.2 holds. Thus the SDP relaxation
may be regarded as an implementable version of the relaxation (10).
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SDP RELAXATION 373

THEOREM 2.1.

(i) bF � eF .

(ii) Suppose that the feasible region bG of the SDP (4) satisfies Condition 1.2. TheneF = cl bF .

Theorem 2.2 below shows that the SDP relaxation (4) (or (5)), Shor’s relaxation
(6), the Lagrangian dual and the relaxation (10) are equivalent under Condition 1.2.

THEOREM 2.2.

(i) supft0 : t 2 T
dg = sup

0�s2Rm
inf

y2H
L(y; s) = sup

s2eT inf
y2H

L(y; s)

� inf
y2H

sup
s2eT L(y; s) = inffcT y : y 2 eFg

� inffcT y : y 2 bFg = inffC � Y : Y 2 bGg:
(ii) If Condition 1.2 is satisfied then both inequalities “�” above hold with the

equality “=”.

The proofs of Theorems 2.1 and 2.2 will be given in Section 4.

3. Some Implications of Theorem 2.1

We first consider the case where all the quadratic functions H 3 y ! yTPky 2 R

(k = 1; 2; . . . ;m) are convex or Qk 2 Sn
+
(k = 1; 2; . . . ;m). In this case, all

the inequality constraints yTPky � 0 (k = 1; 2; . . . ;m) themselves form convex-
quadratic valid inequalities for F . Hence we know by Theorem 2.1 that F =
coF = bF = eF . Therefore we can compute a minimum solution of the QP (1) by
solving the SDP (4).

Consider another extreme case where the quadratic functions H 3 y !
yTPky 2 R (k = 1; 2; . . . ; `) are linear (i.e., Qk = O (k = 1; 2; . . . ; `)) and
the quadratic functions H 3 y ! yTPky 2 R (k = ` + 1; ` + 2; . . . ;m) are
strictly concave (i.e., �Qk 2 S

n
++

(k = `+ 1; `+ 2; . . . ;m)). We then see that ifPm
k=1 skyTPky � 0 with s � 0 is a convex-quadratic valid inequality for F then

sk = 0 (k = `+ 1; `+ 2; . . . ;m). It follows that

eF = fy 2 H : yTPky � 0 (k = 1; 2; . . . ; `)g:

If Condition 1.2 is satisfied then cl bF = eF . Hence the strictly concave inequality
constraints yTPky � 0 (k = `+ 1; `+ 2; . . . ;m) make no contribution to the SDP
relaxation (4) in this case.
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374 TETSUYA FUJIE AND MASAKAZU KOJIMA

Suppose now that
Pm

k=1 skyTPky � 0 with s � 0 is a convex-quadratic valid
inequality for F . By Theorem 2.1, we know that �y 62 bF if

Pm
k=1 sk�y

TPk�y > 0.
Assume that

mX
k=1

sk�yTPk�y = 0 and �y 62 F : (12)

We don’t know in general whether �y 2 bF or �y 62 bF . However, if in additionPm
k=1 skyTPky is strictly convex onH or

Pm
k=1 skQk 2 S

n
++

then we can conclude
that �y 62 bF . In fact, we see from the latter relation �y 62 F of (12) that �yTPj�y > 0
for some j. If � > 0 is sufficiently small then

Pm
k=1 skyTPky+ �yTPjy � 0 forms

a convex-quadratic valid inequality for F which cuts off �y, i.e.,
Pm

k=1 sk�y
TPk�y +

��yTPj�y > 0. Hence �y 62 bF by Theorem 2.1.
The discussion above suggests the following principle.

� Incorporate more “strict convexity” in the representation of the feasible region
F to make the SDP relaxation (4) (or (5)) more effective.

This principle may be seen from the hidden semidefinite constraint on s � 0
involved in the Lagrangian dual. See (8). We show some examples. Let

F 1 �

8<
:y = (y0; y1; y2)

T 2 H :
�y0(y0 + yj) � 0 (j = 1; 2);
�y0(y0 � yj) � 0 (j = 1; 2);
y2

0 � (y1 � y0)
2 � (y2 � y0)

2 � 0

9=
;

=

�
y = (1; y1; y2)

T 2 R
3 :

�1 � yj � 1 (j = 1; 2);
1� (y1 � 1)2 � (y2 � 1)2 � 0

�
;

H �
n

y = (y0; y1; y2)
T 2 R

3 : y0 = 1
o
:

The quadratic function y2
0 � (y1� y0)

2� (y2� y0)
2 involved in the representation

of F 1 is strictly concave on H and all other functions are linear on H . We can also
verify that F 1 satisfies Condition 1.4. Thus we have that

cl bF 1 = eF 1 =
n

y = (1; y1; y2)
T 2 R

3 : �1 � yj � 1 (j = 1; 2)
o
:

We can represent the same set F 1 in different ways. For example, let

F 2 �

8>><
>>:y = (y0; y1; y2)

T 2 H :

yT (P1 + P2)y � 0;
�y0(y0 + yj) � 0 (j = 1; 2);
�y0(y0 � yj) � 0 (j = 1; 2);
yTP3y � 0

9>>=
>>;

=

8<
:y = (1; y1; y2)

T 2 R
3 :

�2 + y2
1 + y2

2 � 0;
�1 � yj � 1 (j = 1; 2);
1� (y1 � 1)2 � (y2 � 1)2 � 0

9=
; ;
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SDP RELAXATION 375

F 3 �
n

y = (y0; y1; y2)
T 2 H : yTPky � 0 (k = 1; 2; 3)

o

=

(
y = (1; y1; y2)

T 2 R
3 :

�1 + y2
j � 0 (j = 1; 2);

1� (y1 � 1)2 � (y2 � 1)2 � 0

)
;

where

P1 �

0
@�1 0 0

0
0

Q1

1
A 2 S3

; Q1 �

�
1 0
0 0

�
2 S2

;

P2 �

0
@�1 0 0

0
0

Q2

1
A 2 S3

; Q2 �

�
0 0
0 1

�
2 S2

;

P3 �

0
@�1 1 1

1
1

Q3

1
A 2 S3

; Q3 �

�
�1 0

0 �1

�
2 S2

:

The sets F 1, F 2 and F 3 geometrically coincide with each other although their
algebraic representation are different from each other. Note also that the strictly
convex-quadratic inequality constraint yT (P1 + P2)y � 0 involved in the repre-
sentation in F 2 is redundant. But it plays an essential role in creating a stronger
SDP relaxation bF 2 than bF 1. In fact, we see that

yT (P1 + P2 + P3) y � �3y2
0 + 2y0y1 + 2y0y2 � 0 (13)

forms a convex-quadratic valid inequality forF 2. The same convex-quadratic valid
inequality (13) applies to F 3. Consequently we obtain that

F 1 � coF 1

� bF 2 = eF 2 = bF 3 = eF 3

=

�
y = (1; y1; y2)

T 2 R
3 :

�1 � yj � 1 (j = 1; 2);
2y1 + 2y2 � 3

�

� bF 1 = eF 1:

Here “�” denotes the proper inclusion.
Now we apply Theorem 2.1 to the SDP relaxation [16] of 0-1 IPs. Consider a

0-1 IP:

Minimize cT y subject to y 2 F ; (14)

where

F =

(
y = (y0; y1; . . . ; yn)

T 2 H :
aTj y � 0 (j = 1; 2; . . . ; `);
yi = 0 or 1 (i = 1; 2; . . . ; n)

)
:
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376 TETSUYA FUJIE AND MASAKAZU KOJIMA

We can convert this 0-1 IP into a QP:

Minimize cT y
subject to y0aTj y � 0 (j = 1; 2; . . . ; `);

yi(yi � y0) � 0 (i = 1; 2; . . . ; n);
�yi(yi � y0) � 0 (i = 1; 2; . . . ; n)
y 2 H:

9>>>>>=
>>>>>;
; (15)

which is a special case of the QP (1). We observe that if

X̀
j=1

�jy0aTj y +
nX
i=1

�iyi(yi � y0) +
nX
i=1

�i
�
�yi(yi � y0)

�
� 0 (16)

with y0 = 1, �i � 0, �j � 0 and �j � 0 is a convex-quadratic valid inequality,
we must have that �i � �i (i = 1; 2; . . . ; n). Hence we may assume that �i = 0
(i = 1; 2; . . . ; n) in (16). It follows that

eF =

(
y 2 H :

aTj y � 0 (j = 1; 2; . . . ; `);
0 � yi � 1 (i = 1; 2; . . . ; n)

)
: (17)

Therefore the resultant relaxation problem

Minimize cT y subject to y 2 eF
is nothing more than the standard linear programming relaxation of the 0-1 IP (14).
Note that the SDP relaxation induced from the QP (15) can satisfy Condition 1.2
although it does not satisfy Condition 1.4. In such a case, we obtain cl bF = eF .

To make the SDP relaxation of the IP (14) effective and stronger, we need to
add redundant quadratic inequality constraints such as

�yiyk � 0 (i = 1; 2; . . . ; n; k = 1; 2; . . . ; n);

yiaTj y � 0 (i = 1; 2; . . . ; n; j = 1; 2; . . . ; `);

(y0 � yi)aTj y � 0 (i = 1; 2; . . . ; n; j = 1; 2; . . . ; `);

�yi(y0 � yk) � 0 (i = 1; 2; . . . ; n; k = 1; 2; . . . ; n);

�yT ajaTk y � 0 (j = 1; 2; . . . ; `; k = 1; 2; . . . ; `)

to the QP (15). This was actually done in the paper [16]. See also [1] etc. Each of the
additional inequalities above alone may not be a convex-quadratic valid inequality
for F in general. Combining the additional inequalities together with the original
ones, however, we can expect to create convex-quadratic valid inequalities for F
which cut off some nonintegral vertices of the LP relaxation eF given by (17).

4. Proof of Theorems 2.1 and 2.2

We need two lemmas to prove the theorems.
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LEMMA 4.1. Let

P �
�

� qT =2
q=2 Q

�
2 S1+n

; � 2 R; q 2 R
n
; Q 2 Sn

+
:

Suppose that a (1 + n)� (1 + n) matrix Y and a y 2 R1+n satisfy

y = Ye0 2 R
1+n

; P � Y � 0; Y00 = 1 and Y 2 S1+n
+

:

Then y 2 R1+n satisfies yTPy � 0 and y0 = 1:
Proof. We see from y = Ye0 and Y00 = 1 that y0 = 1. Let

y =

�
1
x

�
and Y =

�
1 xT

x X

�
:

By definition and assumption, we have that

yTPy = � + qT x + xTQx

= � + qT x + Q � X�Q � (X� xxT )

= P � Y�Q � (X� xxT )

� �Q � (X� xxT ):

On the other hand, it follows from Y 2 S1+n
+

that X � xxT 2 Sn
+

. We obtain by
Q 2 Sn

+
that Q � (X� xxT ) � 0. Thus yTPy � 0. 2

LEMMA 4.2. inffcT y : y 2 eFg = inf
y2H

sup
s2eT L(y; s).

Proof. Assume that ey 62 eF . Then there is an es 2 eT such that
mX
k=1

eskeykPkey > 0:

By the definition of eT , we know that �es 2 eT for every � � 0. Hence

sup
s2eT L(ey; s) � sup

��0

 
cTey + �

mX
k=1

eskeyTPkey
!
= +1:

Thus we have shown that sup
s2eT L(y; s) = +1 if y 62 eF : If eF = ; then

inffcT y : y 2 eFg = inf
y2H

sup
s2eT L(y; s) = +1:

Otherwise we have that

inf
y2H

sup
s2eT L(y; s) = inf

y2eF sup
s2eT L(y; s) = inf

y2eF L(y; 0) = inffcT y : y 2 eFg:
2
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Proof of Theorem 2.1. (i) Assume that y 2 bF . Then there exists a Y 2 bG such
that y = Ye0; specifically Y satisfies Pk � Y � 0 (k = 1; 2; . . . ;m). Hence 

mX
k=1

skPk

!
� Y � 0 for every s = (s1; s2; . . . ; sm)T � 0:

By Lemma 4.1, we see that

yT
 

mX
k=1

skPk

!
y � 0 whenever

mX
k=1

skQk 2 S
n
+

or s 2 eT :
This implies y 2 eF . Thus we have shown that bF � eF .

(ii) Since bF � eF , we know that

inffcT y : y 2 eF g � inffcT y : y 2 bFg (18)

for every c 2 R1+n. Let c 2 R1+n be fixed arbitrarily. If inffcT y : y 2 bFg = �1

then inffcT y : y 2 eFg = �1 by (18). Hence we obtain the equality

inffcT y : y 2 eFg = inffcT y : y 2 bF g: (19)

Now assume that bg � inffcT y : y 2 bFg > �1: By Lemma 1.3, there exists
a maximum solution t� = (t�0; t

�
1; . . . ; t�m)

T 2 R1+m of the SDP (6) with the
objective value t�0 = bg. We also see by (9) and Lemma 4.2 that

t
�
0 = sup

s2eT inf
y2H

L(y; s) � inf
y2H

sup
s2eT L(y; s) = inffcT y : y 2 eFg:

Therefore

inffcT y : y 2 eFg � inffcT y : y 2 bFg = bg = t
�
0 � inffcT y : y 2 eFg:

Thus we have shown the equality (19). By the construction, eF is a closed convex
subset ofR1+n and bF is a convex subset ofR1+n. Hence the identity (19) for every
c 2 R1+n implies that eF = cl bF . This completes the proof of Theorem 2.1. 2

Proof of Theorem 2.2. The first two equalities of the theorem follow from (8)
and (9). The inequality on the second line is straightforward. The equality on the
second line follows from Lemma 4.2. We obtain the inequality on the third line bybF � eF ((i) of Theorem 2.1), and the last equality by construction of bF .

(ii) We know by Lemma 1.3 that supft0 : t 2 T
dg = inffcT y : y 2 bFg. Thus

the desired result follows. 2
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5. Concluding Remarks

If we drop the positive semidefinite constraint Y 2 S1+n
+

from the SDP relaxation
(4), we have an LP (linear program):

Minimize C � Y subject to Y 2 bG0;
where bG0 = n

Y 2 S1+n : Y00 = 1 and Pk � Y � 0 (k = 1; 2; . . . ;m)
o
: Obvi-

ously bG � bG0; hence the LP serves as a relaxation of the QP (1). This LP relaxation
essentially corresponds to the linearization method applied to the QP (1). See the
papers [25, 26, etc.] for more details.
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